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METHOD FOR FILTERING METEOROLOGICAL DATA
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ABSTRACT

A mathematical filter for eliminating persistence in meteorological data is proposed and discussed. This filter
takes the form Z,=X,—p; X, ;. Relationships between statistical parameters of the filtered and the original data -
are derived and found to depend only on the value of p;. Examples of the effect of the filter on the power spectrum of -

various types of input data are also given.

1. INTRODUCTION

Long recognized is the fact that the analysis of me-
teorological data often requires the use of statistical for-
mulas under conditions other than those assumed in
their derivations. The generally limited record lengths,
lack of precision in the measurements, nonstationarity,
and, above all, nonindependence (or persistence) in the
data all cast doubt on the validity of the results. Of these
factors, perhaps the most pernicious (because so often
unrecognized) is persistence.

A technique commonly used by communications en-
gineers to enhance signal-to-noise ratios may be of benefit
here. This is the filtering of the data to remove power at
unwanted frequencies. In its simplest form, this consists
of subtracting the mean value from each individual data
point. The power spectrum of the fluctuations about the
mean is then compared with the power spectrum of white
noise (a white noise spectrum is of uniform power at all
frequencies and results when the random fluctuations
are completely independent). In dealing with meteoro-
logical data, a further modification should be made to
eliminate the effect of persistence on the power spectrum.
Specifically, the filter suggested here is

Z1=X1—P1Xz—1 (1)
where Z,is the modified value, X, and X,-, are the original
deviations from the mean at times ¢ and ¢—1, and p; is
the autocorrelation coefficient between X, and X,-,. (See
table 1.) The reasons for choosing this particular filter
and its effect on the power spectrum are detailed in the
following sections.

TaBLe 1.—Mathematical symbols used

Y original data at time {=1,2,..., N

X, original data, with the mean subtracted

Z. modified data after filtering of X

N number of data points available

M maximum lag used

Pn autocorrelation coefficient of the Xy's at lag n
Ta autocorrelation coefficient of the Z/s at lag »
o2 variance of the X's

o2 variance of the Z/s

Sy spectral distribution function of X

Py spectral distribution function of Z

Ty general spectral distribution function

Ly speciral distribution function of red noise

i V=1

e base of the natural logarithms

D, ¢, n indices to indicate lags

2. MARKOV PROCESSES AND RED NOISE

A simple Markov process is defined as one in which
the value at any time depends only on the value of the
variable one time step before. If the X’s of eq (1) were
the result of a simple Markov process and p; were com-
puted exactly, the Z’s would all be identically zero. The
autocorrelation coefficient of a simple Markov process
decreases exponentially with increasing lag. Thus, the
autocorrelation coefficient at lag n equals (p,)”. This can
be demonstrated as follows. For a Markov process,

Xt=P1X¢—1+W (2)

where W is a random variable with zero mean. Assuming
that the X’s have been expressed as deviations from a
mean value, the autocorrelation coefficient at lag 1 is

n=XX.|o? (3)
while that at lag 2 is
p2=X,X;_2/a'§=png_IX;_z/di=pf. (4)

Similar substitution for autocorrelations at higher lags
yields the general result

(6)

= (pl) "

‘The power spectrum resulting from a Markov process
has a peak at low frequencies and has been dubbed the
‘““power spectrum of red noise,” analogous to that of
white noise. It has been suggested (Gilman et al. 1963,
Mitchell 1964, Ackerman 1967) that those analyzing
meteorological data should compare their observed spec-
trum with that of red noise to determine the significance
of any apparent periodicities. Comparing the spectra
by eye is not entirely satisfactory; nor is successive fitting
of various red noise spectra to the observations. Filter-
ing the data by means of eq (1) and examining the spec-
trum of the residuals gives more objective, reproducible
results.
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3. MATHEMATICAL DISCUSSION

Calculation of autocorrelation coefficients and power
spectra on digital computers when the data have been
sampled at discrete, equal time intervals is well docu-
mented (e.g., Southworth 1960). Assume a series of dis-
crete data points ¥ with mean equal ¥. As a first step in
calculating the power spectrum, it is customary to form
a new data set by subtracting the mean from each data
point. Thus,

X,=Y,-Y, (6)
X=0,
and (7)
a§=—X_2..

It has been shown (e.g., Miller 1956, p. 171 ff.) that the
power density function equals the Fourier transform of the
autocorrelation coeflicient (this equivalence is sometimes
referred to as the Wiener-Khintchine Relation). The
autocorrelation coefficient at lag n is

Pn=Xth—n/f2=&{£‘—_n‘ (8)

For discrete data, the Fourier transform must be expressed
as & finite Fourier series. The spectral density at lag » is
then

w gpm
Ty=po+2 E‘ P, COS M_+pM cos pr 9
q=

where the p’s are defined in eq (8). The p, is the coefficient
at zero lag and is identically equal to 1; ps is the auto-
correlation coefficient at the maximum lag M. The
maximum number of lags used depends on the record
length and is generally chosen to be no more than
1/10 the number of data points available.

If the data are the result of a simple Markov process, we
can express the autocorrelation coefficients as powers of

L,=
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the autocorrelation/coefficient at lag 1 as shown in eq (5).
Substituting this into eq(9) yields

M~-1 gprw
L,=1+42 37 pf cos 3=+ p¥ cos px. (10)

o= M

Next, we make the transformation
cos LoE—1/2(etovr -y ¢~ tapeint) (11)

Substituting this into eq (10), we obtain
M=1 M1
L,,=1—i—21 pletrr/M . 57 pfe~terr/M 4 oM cos prr.  (12)
7= e=1

The second and third terms of this equation are the
sums of geometric progressions and can be evaluated.
Equation (12) then becomes

M, i M ,— -~
Pi etﬂﬂ'_.ple priM Pr e fﬂf.__,ple ipx/M

L,=1+

+p¥ cos prw.
(13)

Pz ) pre= P IM ]

The common denominator of eq (13) is pr— py(e~tPrM |
e~*?*) 11 and equals pi—2p, cos(pr/M)+1. Placing the
entire expression over this common denominator, we
obtain

Lp(1+p¥—2m cos ”A—,_’}){pf-zp, 608 pﬂ-}ﬂj

+[P1Pfle [ipa—(pa/M)] pf._pfle‘ilhr.*_ plel'mr/u]
+lpiplfe=trm=tioritl — gi— plet7r - p g~ t7r/M]

+[p¥p: cos pr—2p,p}’ cos ﬁ—} cos pr+p¥ cos pr].

(14)

Collecting terms and reconverting to cosine form whenever
possible, we can simplify eq (14) to

(15)

1+0—2p COS%,I

Since p is always an integer, sin pr=0, and cos pr=
(—1)?. Making these substitutions and applying the
formula for cos(a—b), we obtain

LP_(I—pf)(l—(—l)”pf’),

16
1+pi—2p, 003%—} (16)

By definition; p, is always less than 1, and M is large
enough so L, approaches the limiting form

1—p}

L= -
14-pi—2p, cos ng (17)

™

This is the formula for the power spectrum of red noise
given by Gilman et al. (1963).

Now consider the variable Z, defined in eq (1). Simple
substitution gives

Z=(1—p)X=0 (18)
and _

o?=2 = (1—p})o%. (19)
Let S, denote the power density function of the X's; rs,
the autocorrelation coefficient of the Z’s at lag »; and P,

their power density function. Then,

M=1
P,=r¢+2 3> r, cos %%}—{—TM cOos P, (20)
a=1
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re=po=1, (21)
poZilir (At p)poi—poi—ppes _ (si—p)m
T (1—pd)2 (1—pd)
=rl=(1+p¥)m—p;(po+pz), (22)
1—pf
rr(H' p?)ﬂlz—p;(m+pa); 23)
it 21
or, in general,
o QoD Pa—pr(Pu1tpuss), (24)
1—p}
Therefore, eq (20) can be rewritten as
1 M—1
P T [1-p?+2 ?;_‘1, {140 pe—p1(pg1tPes1) }
Xcos%’rH(l-{-p?)pu—m(pu_x+pu+x)] GOSpr]' (25)

Collecting terms and making use of eq (9), we obtain

M-1
(1—pDP,=8,(14p))—2p [pl+ Ei (pg—17pos1) COS %ﬁ]
_pl(PM—-l+PM+!) €Oos pmw. (26)

In eq (26), the term inside the summation sign can be
rearranged by collecting terms in p,, and becomes

lg Pu [cos (Q+A1[) pr +cos (q_ﬂll)-ﬂ-]

+c°;}" — p1— par—1 COS P+ pas COS W—___A%_)zw

27
Placing this result into eq (26), we obtain

(1—pHP,=8,(14p})—2p [cos% -+ par cOS p_]\; cospw

M1

+ g} o, (cos (QE)Z’"HOS (q—lé)pvrﬂ

+p1(par—1— pa1) €O pw.  (28)

Since cos A+ cos B=2 cos (1/2) (A+B) cos(1/2)(A—B),
eq (28) becomes

(1—p}) P,=8,(14p%)—2p, cos pA—}[l—i—pM cos pr

23 gpm
+221 pg COS J—\J—] +p1 (Prz—1— par+1) cOS pr. (29)
o

The last term in eq (29) approaches zero for large M,

giving
2 —
P,= Spl:l-!—p; . 2p, cos IM] _

1—p}

(30)

as the limiting case. Blackman and Tukey (1958, pp. 41
and 126) discuss similar procedures witheut giving details.

The modification of the data according to eq (1)
produces a spectrum that equals the spectrum of the
original data times the reciprocal of a red noise spectrum
(eq 17). This verifies the contention that the filtering
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F16uRe 1.—(A) the spectrum that results from a Markov process
with p;=0.8 and (B) the white noise spectrum that results when
the data with spectrum (A) are filtered by eq (1).
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FiGUre 2.—(A) the white noise spectrum resulting from a series of
independent random variables and (B) the spectrum that results
when independent random variables are filtered by eq (1), setting
p1=0-8.

introduced by eq (1) eliminates that portion of the

spectrum due to a simple Markov process.
}

4, EXAMPLES OF THE FILTER'S EFFECTS
ON POWER SPECTRA

Suppose the original data (the X’s) were the result of
a simple Markov process, with a spectrum defined by eq
(17). If the value of p, were 0.8, the original power spec-
trum would look like that in figure 1A. The spectrum of
the modified data (the Z’s) would be simply a white
noise spectrum (fig. 1B). This example itself is trivial;
a purely Markovian process would produce Z’s identically
equal to zero. Not quite so trivial is the conclusion that
the more nearly the spectrum of the modified data ap-
proaches the spectrum of white noise, the more closely
the original data resembled the output of a simple Markov
process.

Let us now consider original data that were completely
random, producing a white noise spectrum as in figure 2A.
In practice, the filtering of eq (1) would never take place
because the autocorrelation coefficients at successive time
intervals would be discouragingly low. However, if the
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Fioure 3.—(A) the spectrum that results from a purely periodic
function with resonant frequency one-balf the Nyquist frequency
(fn=1/2¢) and (B) the magnification of spectrum (A) after the data
are modified according to eq (1), with py=0.8. At other frequencies
the amplitude may be reduced, rather than increased, by filtering.

data were modified (again setting p,=0.8), the resulting
spectrum would be as shown in figure 2B. This is also
the output of the filter defined in eq (1). A spectrum such
as this would be & warning that the filter should not have
been used in this instance. If the spectrum of the original
data does not resemble that of white noise and if & spec-
trum similar to figure 2B still occurs, then one can assume
that a frequency component very close to the folding
frequency is present.

If the original data has a pronounced periodicity such
that S,=1 for p=2M/2 and zero elsewhere, the spectrum
would be a line spectrum, as shown in figure 3A. The
spectrum of the modified data (with 5,=0.8) would be
that of figure 3B. Thus, pure periodicity is not lost by
filtering. In this instance, the peek was even magnified.
At other frequencies or with a different choice of p, this
may not be the case. Original data that consisted of
combinations of characteristics illustrated in figures 1A
and 3A would after filtering produce spectra that were
modifications of the characteristics shown in figures 1B
and 3B.

Suppose there are several periods in the original data or,
at least, no single line spectrum. What would the filtering
process do then? Figure 4A is an example of a sinusoidal
spectrum with a peak at the center of the frequency
range. We will not discuss here the problems that arise
in interpreting the results of the analysis of discrete
data (viz, resclution and aliasing) but will assume that
figure 4A gives the true spectrum of the original data.
Figure 4B, the spectrum of the modified data (still
keeping p,=0.8), shows that the peak is larger and occurs
at & higher frequency than the original—offhand, not a
very good result. The point to remember here is that, if the
spectrum of figure 4A were imbedded in red noise, we

00 02 04 06 08 10
RELATIVE FREQUENCY

00 02 04 06 08 0
RELATIVE FREQUENCY

Fieure 4—(A) the spectrum with maximum amplitude at fre-
quency=0.5f, and (B) the spectrum that results from modifying
the data of (A) by eq (1). and with p,=0.8. Note that the maxi-
mum amplitude has shifted to f=0.6 f,.

probably would not be able to recognize that there was
even a periodic function present, much less determine its
frequency. On the other hand, care should be taken in
interpreting the significance of the frequencies observed
after filtering.

5. SUMMARY

This paper has attempted to sketch the rationale in
proposing that meteorological data be modified to elimi-
nate the effect of persistence. In particular, filtering by
means of eq (1) has been suggested ; and the results of such
filtering under different circumstances have been indicated.
The method has already been used in the analysis of time
variations in snowfall rates (Dyer 1970), and it is hoped
that it can provide a nonsubjective technique of testing
for the presence of periodicities in meteorological dats.
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